Skip to content

Precision Agriculture Summit 2018

The 7th Precision Agriculture Action Summit will be January 15 & 16, 2018 in Jamestown, ND.

Register to Attend or Exhibit
Agenda
Exhibitor and Sponsor info
About the Precision Ag. Summit

Join our Email List

Sign up for our periodic email newsletters to find out about news and upcoming events in the RRVRC.

Visit the sign up page.

RRVRC NewsWire

Tom Erickson Named Interim Director of UND Energy & Environmental Research Center

EERC News - Fri, 2014-07-11 09:34
Tom Erickson, Associate Director for Business, Operations, and Intellectual Property, has been named Interim Director of the University of North Dakota's Energy & Environmental Research Center (EERC). Erickson has been serving as acting director of the EERC...
Categories: RRVRC NewsWire

Peaks and Valleys

EERC News - Mon, 2014-04-28 08:06
The EERC, in partnership with the International Energy Agency Greenhouse Gas (IEAGHG) R&D Programme based in the United Kingdom and the U.S. Department of Energy (DOE), is working to identify the technical challenges associated with pipeline transport and geologic storage of variable quantities of CO2...
Categories: RRVRC NewsWire

Thinking Outside the Box

EERC News - Mon, 2014-04-14 07:21
It's no secret that oil is king, especially in western North Dakota. According to the U.S. Geological Survey, the Bakken Formation is the largest continuous oil resource that it has ever characterized...
Categories: RRVRC NewsWire

Message from the VP for Research and Economic Development

UND Discovery Magazine - Mon, 2013-12-09 09:34
The more things change, the more they stay the same

One of the key missions of a research university is the creation of new knowledge.  The National Academies of Science issued a report last year concluding that research universities, and their strong partnerships with government and industry, are critical to the nation’s prosperity and national goals.   Whether it’s finding better ways to treat cancer or developing methods for more accurate weather prediction, universities are important places for advancing knowledge and then finding ways to use knowledge for the benefit of society.

The University of North Dakota has been in the knowledge creation business for a long time.  In this issue, we’ve taken a look at some “then-and-now” stories to illustrate the ways in which UND has been at the cutting edge of research over time.  The kinds of research we do and the knowledge we create often change, but the focus on doing research doesn’t change.

Looking back after a long hike to the top of a hill, we can be amazed at how far we have come. So too can we be amazed by how much has been accomplished when we look back on what was novel research decades ago. Future generations will take for granted many of the things we are just now discovering in the same way that we take for granted that it’s a good thing for kids to know how to type (of course, now we call it keyboarding).   Back in the 1950s, when I participated in an experiment to teach kids typing, many folks predicted dire consequences for our school achievement.  The research showed they were wrong.

Some research done years ago continues to be important in its own right.  Professor Elwyn Robinson’s seminal History of North Dakota is still considered the definitive work on our state’s history, even though it was published in 1966.   Dr. Kim Porter has done a much-needed update of North Dakota history — after all, a few things have happened in the last 50 years — but that doesn’t change the importance of Robinson’s earlier work.

I think you will enjoy these peeks into the past and some glimpses of the future that UND research is helping to create.

Phyllis E. Johnson, Vice President for Research and Economic Development

Categories: RRVRC NewsWire

Autumn 2013 | Then & Now: The constant – and changing – face of UND research

UND Discovery Magazine - Mon, 2013-12-09 09:34

Space Studies professor Pablo de León looks on as graduate student Tiffany Swarmer, wearing the latest version of UND’s NDX spacesuit system, manipulates an instrument package.

Respect the past and change the world

When the idea was first broached for this issue of UND Discovery (conceived by a huddle of University & Public Affairs and Research & Economic Development folks months before the magazine went to print), it instantly got my creative juices flowing.

“UND Research: Then and Now” was the tagline assigned as our working theme. Our goal was to find a sample of stories about UND researchers and creative thinkers of the past and align them with campus scholars who are doing similar, semi-related or 180-degree opposite research now. What could be more fun than writing about the life and research of individuals throughout UND history juxtaposed with fascinating people of today?

I think you’ll like some of the interesting stories we’ve been able to tell.

The whole idea got me thinking about Bill Nye the Science Guy.  Yes, that guy.  The Cornell University engineer who gave up a career at Boeing to become the most famous (and wacky) TV scientist in the world.

Nye addressed the graduates of Lehigh University in Pennsylvania last May, urging them “to change the world.”  Not an earth-shattering message by any measure when it comes to grad speeches. But it was Nye’s underlying message on the importance of past knowledge combined with new discoveries that resonated with me — as I am sure was Nye’s intention.

Nye told his graduating audience that they knew more physics than Isaac Newton and Albert Einstein, and they knew more about the universe than Galileo or Copernicus. In just his lifetime (roughly 50 years), Nye observed that humans have learned how the dinosaurs really died, the existence of plate tectonics, that the races actually originate from a common source in Africa, and that Mars was once a very wet place.

And, “I can guarantee you that significant discoveries will be made in your lifetime that will change the world,” he told the Lehigh graduates.

Nye wasn’t discounting the work of Newton, Einstein or anyone else who has contributed to the bank of human knowledge. He was reminding those graduates that they are equipped with unprecedented smarts and resources, and are poised to take on the world like no generation before.

“Respect their knowledge and learn from them,” Nye said of our predecessors. “It will bring out the best in them and you.”

That is exactly what we tried to do with this issue of Discovery.  It is a nod of respect to UND’s research past and an eye to new discoveries that will be made possible by UND researchers today.

Maybe together we can change the world!

David Dodds, Editor, UND Discovery

***

UND Discovery is published by the Office of the Vice President for Research & Economic Development, with assistance from the Division of University & Public Affairs.  Editor:  David Dodds.  Contributors:  Juan Miguel Pedraza, David Dodds, Kate Menzies, Jan Orvik, Brian Johnson, Timothy Pasch, Alyssa Wentz, and Marti Elshaug.  Principal photography by Jackie Lorentz and Shawna Widdel.  Please send inquiries and comments to the Office of the Vice President for Research & Economic Development, University of North Dakota, 264 Centennial Drive Stop 8367, Grand Forks, ND 58202-8367.  The University of North Dakota is an equal opportunity/affirmative action institution.

UND.edu/research

Categories: RRVRC NewsWire

Then & Now: Instructional Technology

UND Discovery Magazine - Mon, 2013-12-09 09:25
THEN - Readin', Writin' - and typin' A novel “type” of experiment garnered national attention

The keyboard is now a basic appliance. It’s as essential to the Millennial college student as a hammer is to a carpenter.

Generation Y can’t remember when typing was not required in high school, but Phyllis Johnson, UND’s vice president for research and economic development, grew up in a different era.

UND Business Education Professor John Rowe looks on as Phyllis (Lanes) Johnson (now UND’s vice president for research and economic development) taps the keys on a new Smith-Corona portable electric typewriter in this picture that was distributed nationally to news media.

“There was a lot of fear that if kids learned to type, they wouldn’t learn efficiently because they weren’t writing by hand,” said Johnson. “People wondered if it would affect their academic achievement.”

John L. Rowe, chair of UND’s Business Education Department, challenged that idea in 1958 with an eight-week study. He believed typing should be taught at an elementary school level and could enhance a child’s reading comprehension and vocabulary skills.

Rowe thought the three standards of education ought to be “read’n, typ’n, and ‘rithmetic.”

The device that enabled Rowe to move ahead was the electric typewriter, which was coming on the market.  Prior to that, children weren’t taught to type because manual typewriters required too much finger strength. The Smith-Corona Typewriter Company provided UND with portable electric typewriters for the study, which were perfectly suited for children.

For the study, UND recruited 28 of the best third- and fourth-grade students they could find from local schools.  Johnson was one of them.

“Don’t I look studious here?” Johnson said with a laugh as she skims through her old newspaper clippings.

“Today, the whole idea that ‘teaching kids to type is a negative’ is foreign to us. UND was really a pioneer in something that became important many years later when the computer age arrived.”

Twenty-eight children were selected to go through Rowe’s typing classes during UND’s summer term. While Johnson’s group was learning to type, 28 other kids in a control group spent the summer doing what kids do on summer days.

During the study, media coverage expanded throughout the country, and eventually reached one of the longest-running American TV shows on the air. The NBC Today show, with original host Dave Garroway, shot footage of the study at UND.

Johnson never saw the episode run. At that time, the TV signal from the NBC station in Fargo didn’t reach Grand Forks. There was no way for Johnson to see herself on television.

After the study, the team started collecting the data.

Phyllis Johnson

“They tested us — I.Q. test, reading, spelling, capitalization, punctuation, everything you could think of — before and after the study,” said Johnson.

The results showed that teaching kids how to type came with a predictable drawback.

“The only thing they found was that learning to type made our handwriting worse,” said Johnson.

“Otherwise, changes in your level of academic achievement didn’t occur. I think my handwriting never recovered,” she added with a laugh.

When the eight weeks were up, the University hosted a cap-and-gown “graduation” for the kids.

“I think it’s pretty cool that UND was at the cutting edge of this stuff: the question of how you use technology in education,” said Johnson. “These days, technology in education is the SCALE-UP (Student-Centered Active Learning Environment for Undergraduate Programs) classroom, iPADs, clickers to respond to questions in the classroom — there’s a whole range of things.”

And just like the John L. Rowes of the University’s past, UND faculty members such as Richard Van Eck in the College of Education & Human Development have continued to research the good and the bad that comes with new technologies in the classroom.

“Everyone today takes the fact that you can type for granted. It’s fundamental,” Johnson said. “But at one time, it was a revolutionary idea. I think it’s part of how UND has always been exceptional. People were willing to ask these wild and crazy questions.”

Brian Johnson


Richard Van Eck: “New technology always offers some benefits and will end up being used whether we think it should be or not.”

Now - The One Constant: CHANGE (and how to live with it or even love it) New ideas and technologies for teaching usually meet with some skepticism and resistance

Many a Baby Boomer recollects high tech back in the day: flickering 16 mm projectors, typewriters and tests produced with hand-cranked mimeograph machines.

And just like it is today, tech was viewed askance by many back then. Old-timers from the days of the “Three Rs” — readin’, ‘ritin’, and ‘rithmetic — believed technology such as typewriters deprived youngsters of the opportunity to learn the “old-fashioned” way.

Today such arguments persist, only now they’re about the noiseless digital tech gadgets and games that permeate the Millennial culture — the so-called “BYOD,” or Bring Your Own Device.

How does today’s technology and the questions we’re asking about it compare and contrast to previous tech encounters in the classroom, for example, mechanical film projectors and typewriters?

“Change is always viewed with suspicion, whether considering the shift from analog to digital clocks, from shoelaces to Velcro, or from copper phone lines to wireless phones,” said Richard Van Eck, a University of North Dakota educator and global expert in digital game-based learning and other digital tech.

“I think we are biologically predisposed to dislike change, because our ancestors knew that once you had a way to survive, any change meant a potential threat to survival,” he observed. “No matter that some changes could help you; they always come at some price.”

The same is true for technology.

An instinct for the negative

“When technology comes out, we often focus on the negatives, and there are always negatives,” said Van Eck, who served as graduate director in the multidisciplinary Instructional Design & Technology (IDT) program in the Department of Teaching & Learning (part of the College of Education & Human Development) until this fall.

“The trick is to figure out both the positives and the negatives and to push for a balance between them, rather than denying the benefits for fear of the negatives,” he said. “We perennially worry that a new technology will ‘replace the teacher’ or that we will lose something valuable in the process.

“Usually, these things are valued because they are a part of our past, and nobody wants to see what they have cherished change.”

Van Eck, a master of digital wizardry in the classroom, says he loves books.

“I love the feel of paper books and own hundreds of them,” he said. “But I also appreciate the value of searching for text, bookmarking and highlighting key phrases in a nondestructive way that I can change, and carrying hundreds of books with me in my pocket.”

On the sidelines or in front?

So the question becomes, how can we ensure that the new technology is used wisely?

“New technology always offers some benefits and will end up being used whether we think it should be or not,” Van Eck said. “So we can sit on the sidelines and abdicate responsibility for its best use to younger generations, or we can lead the way in promoting its wise use.”

Although digital simulations and games are still far from the norm in today’s K-12 schools, Van Eck says that acceptance of those media as teaching tools is growing.

For kids, he noted, the gadget-saturated world is their reality, an ever-evolving electronically mediated transition from virtual to real.

Today’s K-through-college students live life in the electronic lane.

“They’re digital natives,” Van Eck said.

Juan Miguel Pedraza

Categories: RRVRC NewsWire

Then & Now: Arctic Explorations and Culture

UND Discovery Magazine - Mon, 2013-12-09 09:20
Then - Blazing a New Path in Arctic Research

From a checkered start at UND, Vilhjalmur Stefansson rose to become one of the continent

Research based at the University of North Dakota ranges all across the world: from the High Arctic to Antarctica and almost everywhere in between.

This year marks the centennial of the Canadian Arctic Expedition (CAE) of 1913. It was the first Canadian Government expedition to the Western Arctic and, at the time, the largest multi-disciplinary scientific Arctic expedition ever mounted. And it was all led by UND alumnus Vilhjalmur Stefansson.

Born Nov. 3, 1879, in Arnes, Manitoba, Stefansson went on to become one of the most recognized Arctic researchers of all time. In 1881, the Stefanssons moved to a farm in Dakota Territory, near the town of Mountain, located in present-day Pembina County, N.D.

Stefansson enrolled at UND in 1897 — just 14 years after the University was founded. During his time on campus, Stefansson edited the school newspaper, was very popular, and was voted the best orator.

It was his constant pranks, however, such as parking the horse carriage of UND’s president in front of a local house of ill-repute, that got him into trouble with the administration and permanently suspended from UND in 1902. His dismissal caused such uproar that he was escorted to the train depot by well-wishers.

Undaunted, Stefansson went on to graduate from the University of Iowa with a degree in liberal arts. From there he enrolled at Harvard and obtained a master’s degree, always with a focus on the North, inspired partly by his Icelandic heritage and long experience handling the frigid temperatures of Manitoba and North Dakota.

Research by “immersion”

Even a stalwart explorer such as Stefansson knew that Arctic survival required skills. So he sought out mentors among the Inuit natives of the region, studied the language, and honed his cold-weather survival abilities. This made Stefansson one of the first researchers to conduct a “total immersion” style of research, working and living in the North.

Stefansson, as a student at UND

Eschewing heavy supply cargoes, Stefansson followed Inuit example and undertook “ice trips” on which he and a handful of companions lived off the ice and the land, relying on seals and caribou for food and fuel. Stefansson’s exploration method proved effective, and this “living off the ice” method allowed him to continue exploration despite limited supplies.

During the winter, the Arctic is dark and freezing with few, if any, hours of daylight. Without proper equipment, explorers could suffer from snow blindness, frostbite and exposure. The summer, in contrast, was more accessible, but the season was short and had its own perils. A major plague was mosquitoes. One Expedition member recalled, “It is the astounding atmosphere of mosquitoes that envelops the whole face of the country in the summertime that is the real curse.” In total, 17 men lost their lives during the CAE.

In a span of five years, the CAE covered more than 10,000 square kilometers of previously unknown territory and discovered five of the last six unknown Canadian Arctic islands.

The scientists returned with thousands of specimens of animals, plants, fossils and rocks, and artifacts from the Copper Inuit and other Inuit cultures. Researchers also brought back more than 4,000 photographs and 9,000 feet of film.

A new view

Stefansson offered a new way of thinking about the Arctic, not as a wasteland but as an area full of existing and potential value. He expressed concern about native peoples being “crushed by civilization’s juggernaut,” championing traditional Inuit ways and co-existing with the modern economic and strategic potential of the Arctic.

He saw the Arctic as the crossroads of the world, “a hub from which the other oceans and continents of the world radiate like the spokes of a wheel.”

Years later in 1930, past pranks were all forgiven when UND awarded Stefansson an honorary Doctor of Laws degree — then only the third such degree ever awarded by the school. He returned to the campus frequently to visit with students and faculty.

After spending a lifetime working to uncover the mysteries of the Arctic North and share its beauty and grandeur, Stefansson died on Aug. 26, 1962.

Stefansson’s legendary expedition lives on in an important aspect of Canada’s present-day Northern Strategy:

http://www.northernstrategy.gc.ca/sov/cae-eng.asp

Kate Menzies and Timothy Pasch

Now - Reaching Youth to Preserve the Past Modern technologies may be the key to preserving a largely oral tradition and identity

University of North Dakota Communication Professor Timothy Pasch did not spend his summer like most.

Timothy Pasch (left) with Kanaaq Anoee of the Department of Education for the Government of Nunavut.


He packed his bags and headed for the Canadian Arctic Circle with several digital media tools and his expertise in communication to help preserve the language and culture of the Inuit.

With citizenship in two countries — Canada and the United States — Pasch understands the role communication plays within a culture.

“I came to realize that the ability to speak different languages is a great treasure of life and that culture is inextricably linked to language,” said Pasch, who also speaks French and Japanese fluently.

Pasch’s research was funded by a Foreign Language and Area Studies Fellowship grant, which he received while a Ph.D. student at the University of Washington. He was the first person to receive such a grant to study a “First Nations” language.

First Nations is the Canadian equivalent term for Native Americans.

Pasch practiced “total immersion” research, living with an Inuit family in the community of Inukjuak of Arctic Quebec. There he researched the effects of social networking on the Inuktitut language.

Pasch discovered that communities across the Canadian Artic were experiencing dramatic changes: languages and cultural identities were vanishing.

“Having seen how quickly language can be lost, and how challenging it can be to teach language, I became focused on adapting technologies for endangered-language learning through recording and broadcasting cultural knowledge and awareness,” Pasch said.

For Pasch, communication is an important facet of cultural preservation. The loss of a language can result in loss of knowledge and wisdom accumulated over generations.

In June, Pasch made high-definition recordings of two Inuit elders describing for young Inuit how to prepare for an extended hunt.  Around that time, two young Inuit died on a snowmobile trek because they had not adequately prepared for the journey.

“These elders have great concern for future generations of Inuit,” Pasch said. “However, as Inuktitut has principally been an oral language until recently, it has not always been preserved in writing.”

Pasch created a model — Arctic New Media Convergence in the Digital Humanities — to train and encourage young Inuit to use tools such as still image and video, audio, social media, Web and mobile-application design to preserve and broadcast the voices of the Inuit elders, while sharing their own.

“Seeing these students become so excited and animated while using technology to create new media forms in their own language was immensely rewarding on both scholarly and spiritual levels,” Pasch said.

Pasch already has shared his research in the Kivalliq News, a major newspaper among the Inuit; the Canadian Broadcasting Corp.; and Twitter feeds across the Circumpolar Arctic.

“I am exceedingly grateful for these connections and the ability to broadcast my thought that the Northwest Passage becoming navigable makes the Inuit voice more important and valuable than ever,” said Pasch.

His work with our northern neighbors doesn’t stop there.

Pasch recently was appointed to the Board of Directors for the Association for Canadian Studies in the United States as a representative for Communication and Arctic Affairs. He also co-authored a book with Kyle Conway, also a UND communication professor, titled Beyond the Border, which focuses on the growing importance of the international border between the U.S. and the Canadian Great Plains and prairie regions.

Earlier this fall, Pasch, working with the Consulate General of Canada in Minneapolis, held an Arctic Symposium at UND to commemorate the centennial of the launch of the important Canadian Arctic Expedition of 1913-1918, which led to many new discoveries of land, scientific specimens and historic First Nation artifacts. The UND symposium attracted celebrated National Geographic explorer Will Steger and Canadian Museum of Civilization Director David Gray.

A focus of the symposium was the life and work of UND alumnus Vilhjalmur Stefansson, who led the expedition.

Pasch’s research and digital Arctic outreach efforts were inspired by Stefansson and his total immersion style of research 100 years earlier.

In the classroom, Pasch hopes to use his experiences in the Canadian Arctic to inspire students to learn about different cultures by studying a foreign language, studying abroad, or taking part in international research opportunities.

An elder, an Inuit boy, and a night watchman in Arviat.


Kate Menzies

Categories: RRVRC NewsWire

Then & Now: Antarctic Ventures

UND Discovery Magazine - Mon, 2013-12-09 09:15

Then - Lessons for the Future Frozen in Time and Ice Basic research done yesterday and today pays dividends in knowledge and applications

John Reid wasn’t about to let it go.

A critical editorial in the Harvey (N.D.) Herald got Reid’s dander up, and he ventured a friendly retort.

The Herald had taken Reid to task on March 25, 1965, for apparently wasting taxpayer money after the University of North Dakota geologist had $10,000 worth of Antarctic glacial ice sent to his 5-degree-cold laboratory in Leonard Hall.

Surely, there must have been sufficient ice for research in Grand Forks after the long winter, the paper suggested.   How about refrigerator ice?  Why go 10,000 miles to the bottom of the world to bring home North Dakota’s primary winter export?

The irony was probably too great for the Herald’s writer to pass up.

But this editorial was about more than slabs of ice from afar. That was just the attention-getter.  It echoed a common indictment in scientific circles back then and that persists today: “What practical value is basic scientific research?”

Reid, at the time a UND associate professor of geology who actually paid for the ice shipment out of pocket, could have lectured the editorial writer all day on the geological value of glacial ice versus what’s found in your everyday icebox, but he didn’t.  His reply zeroed on the larger point.

“Scientists are always pressured to justify their research,” he wrote. “Regardless of how often we explain that by far the greatest number of practical inventions [has] resulted from some form of basic research on the part of a scientist at a university, people will not readily accept this.” Reid pointed to the advent of the laser as a discovery that had no immediate practical application, and that Madam Curie’s notion to isolate radium was a study of the unknown rather than a conscious step toward atomic power or detection of pollution or cures for cancer.

“If the researcher in the university is forced to find practical reasons for his research, science will be stifled,” Reid wrote. “It is only by searching beyond this boundary that technology will be advanced.”

Fast-forward nearly 50 years: Reid, now 80 and long retired from UND, says the views he shared in his letter to the editor have not waned a bit.

“Basic research may seem to be a waste of effort and time by many,” Reid said from his home in Fort Collins, Colo. “But even negative results are critical to understanding. Science progresses by trial and error.  The desire for practical application of research is understandable, but no one can foresee the future, and the majority of practical discoveries has come from basic research and serendipity!”

Words of wisdom from a longtime researcher who’s seen it all and done it all — mostly while at UND.

But even more than a researcher, Reid is probably most proud of his legacy as a teacher. There’s an underlying sense, reading through Reid’s three-page response to the Harvey Herald, that rather than attacking the writer, he is teaching the writer — and by extension the public — about the value of basic scientific research.  He was always teaching.

Reid, a giant in the field of geology with two major terrain features in Antarctica — a glacier and a mountain ridge — named after him, was a colossus in the classroom, too.  For nearly 40 years, he was regarded as one of UND’s outstanding teachers and scholars. He was named North Dakota Professor of the Year in 1996, and received several other awards for teaching excellence during his career.

“My greatest achievement as a faculty member, without a doubt, was mentoring my students,” Reid said. “I continue to hear from many, and am very proud of their achievements.”

Teaching is in Reid’s blood. The Melrose, Mass., native’s childhood was strongly influenced by his mother, a former one-room school teacher.  As he grew up, Reid’s life lessons were enhanced when his parents took in “roomers” for supplementary income. The roomers included professional men, unwed mothers, temporarily abandoned children, and war-separated families. These experiences would serve him well years later as a tough but fair teacher and mentor.

“I developed a strong sensitivity to people’s problems.  As a result, students quickly learn that I care about them,” he once wrote in a paper about his contributions as an undergraduate teacher.

Outside the classroom, Reid says his fondest memories were times spent with students on field research expeditions, especially those in the Martin River Glacier Area of south-central Alaska.

Reid’s name may be stamped on Antarctica, but much of his geological reputation was earned at the other end of the planet in places such as Alaska, Arctic Canada, and Greenland.

A much-hailed research discovery took place on a lake in the Martin River Glacier Area in the summer of 1963, when Reid and students began investigating a massive, 200-ton (100-feet-wide and three-football-fields-long) dirt-covered iceberg that suddenly “popped up.”  The discovery suggested new mechanisms for the origin of icebergs and provided supporting evidence to existing theories on ice flow.  Their research was published in the Journal of Glaciology.

Reid said the work was more valuable for his students than anything that could be demonstrated in a traditional classroom.

“They learned much and so did I,” he said.

Reid actually only spent a few months in Antarctica in the winter of 1958-59. The conditions were brutal as his team camped 45 miles from the nearest shred of civilization.

“That was in the days when comfort and communication were more primitive,” he recalled. “Our tents, for example, had no floors, just the snow.”

Still, it was a fruitful experience. It was here that he chiseled rare chunks of surface glacier ice from the Ross Ice Shelf, the largest mass of floating ice in the world (500 miles long by 500 miles wide, moving a half-mile per year — the “speed of light” for geologic time).  It was this glacial ice that Reid would eventually have shipped to UND a few years later, making a splash in local and national media — and one aforementioned editorial.

Reid and UND enjoyed the publicity that the exotic Antarctic ice brought. More practically, Reid used the samples to educate his students and to study geological theories of the time.

“The formation of mountains is perhaps the most embarrassing problem that geologist have,” Reid wrote in 1965. “The pertinence of this analogy lies in the fact that ice is a rock, composed of the mineral, ice. Ice deforms plastically under very slight pressures. Hence, we can watch a mountain form in ice form in a very short period of time. To see the same amount of deformation in other types of rocks would require hundreds of thousands of years.”

Reid retired from UND in 1999, but UND’s geomorphological research in high, cold places of the world didn’t end with his departure. Reid said he’s quite aware of the work that another UND faculty member and fellow geomorphologist, Jaakko Putkonen, is doing with his own students in Antarctica and the Himalayas.

“I applaud Jaakko for his dedication to glacial geomorphology and to his willingness to involve students in his research,” Reid said. “Students learn best from direct participation.”

In 2000, Reid and his wife of 57 years, Barbara, moved from Grand Forks to Fort Collins, close to the Rocky Mountain National Park, where they enjoy hiking.

Ever the teacher, Reid continued working with his last Ph.D. student after retirement.  He also volunteered for five years at local high schools in geoscience classes, organizing rock and mineral collections. Today, he assists three days a week in the computer labs of a nearby elementary school, and volunteers as an ombudsman at two nursing homes for the County Office on Aging.

“So, even though I have turned 80 — I keep happily busy.” And, apparently, still happily teaching.

David Dodds

Now - Antarctica Yields Climate Clues for Earth, Beyond

In an era soaked in a digital deluge where online is the place to be, Jaakko Putkonen and his student teams blaze — or let’s say freeze — a totally different path.

This University of North Dakota geomorphologist, a native of Finland, spends most of his field time in Antarctica and other frigid remote places.

Most recently, Putkonen took himself and a team of UND graduate and undergraduate students to a remote interior desert — an ice-free valley — along the largest mountain range in Antarctica. They were chasing clues to how and why landscapes change. They also retrieved vital “data loggers” placed in that Antarctic desert by Putkonen and another student team a year earlier.

“We wanted to collect data and more samples and to go to places this time that we couldn’t get the last time we were there (in December 2010 to January 2011),” said Putkonen. He’s conducted research in several of the remotest, highest and coldest locations in the world, including Antarctica, Greenland, Spitsbergen, Lapland, and in the Himalaya Mountains.

“It’s a physically punishing trip because you’re working 2,500 meters above sea level in a truly rough landscape. And when I say rough, I mean boulders on top of boulders. After most days, we were mentally exhausted just because we had to plan every step, jumping from boulder to boulder, as falling down is not really an option in a location where the nearest medical help is 1,000 miles and several days away.”

The data loggers and sensors were placed at various locations in the desert to gather a year’s worth of information.

“All that equipment had to go through an Antarctic winter, which can be truly brutal,” Putkonen said. “We set all the sensors and data loggers up on plumbing-grade zinc pipe anchored with boulders.”

Jaakko Putkonen: The data generated by rock samples will provide an understanding not only of the evolution of the Antarctic landscape but also of similar environments beyond Earth, such as that of Mars.
Photos courtesy of Jaakko Putkonen.

Rocks of ages

Putkonen and one of his Ph.D. students, Theodore Bibby, are extracting scientifically usable information from the piles of data and samples they gathered. Part of that work is being done in a unique lab at the Harold Hamm School of Geology & Geological Engineering, part of the College of Engineering & Mines.

It’s basically about dating rocks.

“We’re trying to understand how the Antarctic landscape evolved over both short and long time periods,” Putkonen said. “We ask some straightforward questions, such as how is the dirt moving around there like it does here (in North Dakota) in a big rainstorm or with North Dakota’s famous winds. The dirt that’s being eroded somewhere is being deposited somewhere else — the landscape changes.”

Extracting usable data from all the samples requires using an analytical method that measures the rare radioactive isotopes in each specially prepared rock sample.

“We know that rocks that are buried, for example, deep below the ice sheet don’t get bombarded by high-energy particles, and we can detect that,” Putkonen said.

Rocks that are exposed on the Earth’s surface, on the other hand, accumulate rare isotopes as a result of particle bombardments from outer space. The isotopes’ effects can be studied in Putkonen’s lab.

“We can measure the amount of the isotope and back-calculate how long that particular rock has been sitting there out in the open,” Putkonen said. “Some rocks from deep below the surface that are millions of years old have never been to the surface, but when a glacier plucks them up and then the ice melts, those rocks are exposed at the Earth’s surface.”

The cosmogenic isotope analysis is a lot like the radio carbon-14 dating system that is routinely used to determine ages for old wood products such as furniture, paintings, old buildings and other man-made structures.

“But the isotope analysis allows us to go much further back in time — millions of years — than can carbon-14 dating, which only goes back about 50,000 years,” Putkonen said.

This National Science Foundation-backed research aims to describe changes in the Antarctic landscape over time, but it has also detected natural changes in climate. This could help scientists understand more about human-generated climate change, which also is impacting landscapes around the world in ways that aren’t clearly known.

Putkonen’s research also extends to planetary studies.

“When we look at Mars, for example, there are areas that look very similar to where we were recently in Antarctica,” Putkonen said. “And it turns out that it is much cheaper to go to Antarctica than Mars. We are building insights about the Martian environment by doing field research in Antarctica.

“It is funny how basic research often works. The payoffs may not be obvious when you start, but eventually they come to light in a surprising and unexpected way.”

Inspiring leaders

Last summer, Putkonen took UND students on a three-week trip to Nepal for a course on the basics of field geology high in the Himalayas.

“To learn geology you have to go where the geology is, which is in the field,” said Putkonen, who started doing science trips to Nepal during his postdoctoral work.

But Putkonen doesn’t discount the work he does in the traditional classroom.

“My task is not just to deliver facts for the students in preparation for a skillful workforce,” he said. “My task is to unleash the imagination, and motivate the students to innovate and to become leaders instead of followers.”

Juan Miguel Pedraza

Categories: RRVRC NewsWire

Then & Now: Robinson’s Legendary State History

UND Discovery Magazine - Mon, 2013-12-09 09:10
Then - Standing the Test of Time Elwyn Robinson's Masterwork Remains Relevant After Half a Century

Not many textbooks are used for 50 years. But Elwyn B. Robinson’s History of North Dakota has stood the test of time.

It’s the best state history ever written and it’s still relevant, said Gordon Iseminger, Chester Fritz Distinguished Professor of History.

Iseminger, a long-time colleague of Robinson, has been at UND for 52 years.  He is the longest-serving faculty member on campus and the longest-serving state employee. He is also one of very few faculty to have had children and grandchildren of former students in his classes.

“Robinson absorbed North Dakota history,” Iseminger said.  “I don’t see how we can not use the book. The themes are still mostly relevant.  Circumstances have changed, but not so much the themes.”

Libby and Robinson
Iseminger, who is known for his high standards, is a historian’s historian. His research includes local history, Germans from Russia, and a series of essays on former UND history chair Orin Libby, one of UND’s “grand old men” and the man who brought Robinson to UND.

Iseminger

“Libby retired in 1945, and his presence was still palpable in 1962,” said Iseminger. “He doted on maps, didn’t suffer fools gladly, and was influential in starting the State Historical Society, the State Library, the State Museum, and the State Park System.”

When Iseminger joined the faculty in 1962, he said, research and scholarly work were not emphasized as much as they are today, and Robinson was able to spend more time on his masterwork. “His work was painstaking, almost plodding,” Iseminger said. “He spent 20 years on it, and it shows.”

There are other state histories, Iseminger said, but they are not as comprehensive. Following Robinson is tough, he said, adding he would not want to write a more current history.  Kim Porter, professor of history, stepped up to the challenge and produced a new volume, North Dakota:  1960 to the Millennium.

“I give Dr. Porter a lot of credit,” he said. “She has an agricultural history background, and she did well at summing up the 30 or 40 years of North Dakota’s history since Robinson’s book was published. It was a daunting task, but Dr. Porter, although from Iowa, has adapted to the state and to being a North Dakotan.”

Still relevant

Robinson identified six themes of North Dakota history that are mostly still relevant: remoteness, dependence, radicalism, economic disadvantage, the “too-much mistake,” and adjustment. Remoteness meant that the state was influenced by its distance from national centers. Dependence on external pricing for furs, grain, and other commodities defined profit and loss. Radicalism became the state’s answer to these themes, resulting in the birth of the Nonpartisan League and the establishment of the State Mill and state-owned Bank of North Dakota, both of which served to address the theme of economic disadvantage. The “too-much mistake” was that more towns, farms, schools, roads, colleges, churches, and governmental institutions were established than could be supported — all requiring adjustment, Robinson’s last theme.

More about the man: Elwyn B. Robinson, 1905-1985

Elwyn Burns Robinson, University Professor Emeritus of History at UND and a noted state historian, was born on a farm in Ohio and earned degrees from Oberlin College and Case Western Reserve University in Cleveland. In 1935, he was invited to join the UND faculty by Libby. He wrote and presented a series of popular radio talks titled “Heroes of Dakota.” This led to writing History of North Dakota, which even today is considered one of the best state histories in the nation. He remained active after his retirement in 1970.

Elwyn Robinson lectures to his last class in the Department of History before retiring from the UND faculty in 1970.

Jan Orvik

Now - Updating a Classic Kim Porter takes over where Robinson left off, all the way into the new millennium

It needed to be done, said Kim Porter, professor of history, about her book, North Dakota: 1960 to the Millennium. It started when one of her North Dakota history students said her grandfather may have been a North Dakota governor.

“Turns out it was her great-grandfather, and he was a senator,” Porter said. She teaches courses in North Dakota history, and knew an update was needed for the classic History of North Dakota, which is still used in state history courses across the state. Elwyn Robinson’s history, published in 1966 and still in print, essentially ended in 1950, and there was no current state history.

“North Dakota is their home,” she said of her students. “Their grandparents read the same history book that students do today. They need to continue the history with current names and faces.”

North Dakota’s role has changed, Porter said. When Robinson’s history ended with the 1950s, the Cold War was ongoing, the state had no interstate highways, no missile stations, and no oil boom. Garrison Dam was not yet built, and televisions were a luxury. Today, politics have changed, North Dakota has its first woman senator, and it is the only Great Plains state that is growing.

Porter, who grew up on a farm in Iowa, was a bit nervous about being seen as an outsider. But Robinson himself was an Ohio native, and Porter has been in the state for 18 years, longer than most of her students have been walking. She joined UND in fall of 1996, “just in time for the 1997 flood,” and was attracted to the position because it was the only listing with “rural” and “agriculture” in the job title. “I understand what a piece of ground means and feel a connection to tradition.”

Porter’s book connects North Dakota to the nation and focuses on politics, the economy, weather, and interesting aspects of the state, such as the “Zip to Zap,” the Poppers and their Buffalo Commons proposal, and more.

“Focusing on a box of dirt is boring,” she said. Through feast and famine, boom and bust, flood and drought, the book details North Dakota and its connection to national politics and the larger world with a clear and affectionate eye.

“There’s nothing flat about North Dakota except the Red River Valley,” she said.

Porter pursues other projects in addition to North Dakota history. She is currently working on a Grand Forks community oral history in which she interviews community elders, and is kicking off an oral history of World War I veterans by interviewing their children. She recently completed an oral history of the Synagogue in Grand Forks, which is now on the National Register of Historic Places, and is working on a book about Henry Field, a seedsman from Iowa who founded Field’s Seed and Nursery Catalog.

“People don’t write books anymore like Elwyn Robinson did,” she said about the 20 years Robinson spent writing the book. “Academics are expected to produce more.”

And Porter’s book already needs a new chapter, she said. Times are changing so fast that it’s out of date as soon as it’s printed.

“If this is where you want to be, you can make your story here,” she said. “You become a person rooted in something greater than yourself.”

Kim Porter: "There’s nothing flat about North Dakota except the Red River Valley."

Jan Orvik

Categories: RRVRC NewsWire

Then & Now: UND Research on the National Map

UND Discovery Magazine - Mon, 2013-12-09 09:00
Then - Laying the Foundation for a National Reputation Robert Nordlie’s research helped put his department and UND “on the map” nationally and across the globe

For 38 years, Dr. Robert Nordlie was dedicated not only to research at the University of North Dakota, but also to the success of the Department of Biochemistry & Molecular Biology.

Fueled by the same National Institutes of Health grant for 35 years, Nordlie brought international recognition to UND with his research of glucose-6-phosphatase, an enzyme that regulates blood glucose levels. His research has proven helpful in the study of diabetes, cancer and other diseases.

Before graduating from UND with a master’s degree in 1957 and a Ph.D. in biochemistry in 1960, he received his bachelor’s degree from St. Cloud State University in 1952. It was during his postdoctoral research fellowship in Dr. Henry Lardy’s Institute for Enzyme Research at the University of Wisconsin-Madison that Nordlie first pursued the topic he would spend the next four decades researching:  glucose-6-phosphatase.

“One of the great happenings of my life was going to the Institute for Enzyme Research and working with Dr. Henry Lardy,” Nordlie said.  “Dr. Lardy was interested in gluconeogenic enzymes, and that is how I got introduced to carboxykinase and the biosynthetic activities of glucose-6-phosphatase.”

In 1962, Dr. William Eugene Cornatzer, the founder of the UND Department of Biochemistry and chair of the department from 1951 to 1983, enticed Nordlie to come back to his alma mater as a full professor straight out of his postdoctoral research.

“Becoming a full professor straight out of a post-doc is and was almost unheard of,” said Dr. John B. Shabb, associate professor in the UND Department of Basic Sciences, who was hired by Nordlie in 1992.  “Dr. Cornatzer knew this was somebody who was going to make a difference.”

“Dr. Cornatzer was a very ambitious man and he wanted to set up a research-oriented facility,” Nordlie said. “Some people made fun of him, but we put North Dakota on the map nationally and internationally. He supplied the drive; I supplied the ideas and the research.”

Though Nordlie retired 13 years ago, his passion for enzymes is still evident.

“I am personally delighted, at age 83, with the veritable explosion in the glucose-6-phosphatase field. There is great potential there for clinical applications,” wrote Nordlie in his then-and-now review of his research, A Retrospective Review of the Roles of Multifunctional Glucose-6-Phosphatase in Blood Glucose Homeostasis: Genesis of the Tuning/Retuning Hypothesis. His publication outlines the transformation of his field from being solely biochemistry to both biochemistry and molecular biology.

Nordlie took over as the chair of biochemistry when Cornatzer retired in 1983. He proposed renaming the department as “Biochemistry & Molecular Biology” and brought the first three molecular biologists to the University.

“That’s the interesting thing. Even though he himself didn’t want to make that change, he recognized the need for the change in the department and he went out and did it,” said Barry Milavetz, a professor in the UND Department of Basic Sciences and associate vice president for research development and compliance. “That’s real leadership.”

Milavetz worked alongside Nordlie after being hired by him in 1986.

On July 1, 2013, the UND Department of Biochemistry & Molecular Biology changed to the UND Department of Basic Sciences as the School of Medicine & Health Sciences merged the basic science departments.

“Bob retired 13 years ago, and even though the department no longer exists as an independent entity, his impact on basic science research and education at UND persists.”  Shabb said. “Five current faculty members in the Department of Basic Sciences were hired and mentored by Bob Nordlie.  They include a Chester Fritz Distinguished Professor, Roxanne Vaughan; an associate vice president for research, Barry Milavetz; and the last chair of the Biochemistry & Molecular Biology Department, Kathy Sukalski.”

His impact on the department went beyond the research.

“He was an outstanding lecturer for medical students,” Shabb said. “I still go over to Altru for a doctor’s visit, and when they find out I am a biochemist, they say, ‘Oh I remember when,’ and they will mention a specific lecture from 30-plus years ago given by Dr. Nordlie.”

Nordlie spent 38 years teaching metabolism and was named the UND School of Medicine and Health Science’s first James J. Hill Research Professor, a position that was funded by the family of railroad executive James J. Hill.

He also published more than 130 research papers around the world in publications such as The Journal of Biological Chemistry.

“He spoke well with students and he spoke well with faculty,” said Sukalski, associate professor in the Department of Basic Sciences. “He really wanted to see the faculty he hired succeed.”

“He has influenced me not only from the scientific perspective, but he also taught me how to run a meeting, how to interact with people, and how to be diplomatic,” Milavetz said. “For an administrator, those qualities are important.”

The former UND Department of Biochemistry & Molecular Biology won the University Outstanding Research Award twice under Nordlie’s administration.

“It was the type of people that were hired and the environment in which they were placed that led to the success of the department,” Sukalski said.

Alyssa Wentz

Now - Genes of Our Fathers, Disease of Our Children A UND team scores a major award to study the role of epigenetics in human health – past, present and future

Roxanne Vaughan: This grant will support young investigators, enhance programs across multiple disciplines, and elevate the research capacity of the University.

Epigenetics — the hard science behind the mystery of whom each of us becomes — is gaining lots of international attention.

In fact, so much that the federal government is putting a lot of cash behind programs that dig into the elusive mystery of this relatively new field.

The National Institutes of Health (NIH) recently awarded the University of North Dakota $10.5 million in a five-year grant to support an Institutional Development Award (IDeA) Center of Biomedical Research Excellence (COBRE).

The question of the epigenetic role in diseases is uppermost on the horizon for this new UND COBRE team.

“Abnormal epigenetic regulation has been implicated in a variety of human diseases,” said Joyce Ohm, a core member of the new center that investigates, among other things, the abnormal epigenetic silencing events in the initiation of human cancers. “Those diseases include cancer, obesity, diabetes, infertility and neurodegenerative disorders such as Alzheimer’s disease or Parkinson’s disease.”

UND researchers are working to understand the bases for these diseases and how epigenetics may play a role in the onset of diseases in future generations, and to develop new strategies for treatments or preventions.

Ohm, an assistant professor of biochemistry and molecular biology, and her epigenetics research colleagues note, an individual’s overeating or cigarette smoking or cancer today might be a result of what his or her grandparents did and might have an effect on his or her children and grandchildren.

Learning more about how that all happens is the key to UND’s new COBRE.

Epigenetics relates to the biochemical machinery at the cellular level that switches specific genes on — or doesn’t — affecting what each of us does: for example, what we choose to eat, how we sleep, how we get sick, whether we get cancers or Alzheimer’s, and how we express a whole range of other behaviors.

“This grant will significantly expand epigenetic research at UND by instituting a variety of programs that will support young investigators at early stages in their careers, establish core facilities and purchase major equipment, and assist with faculty mentoring and development,” said Roxanne A. Vaughan, principal investigator of the COBRE and a Chester Fritz Distinguished Professor of Biochemistry and Molecular Biology in the UND School of Medicine & Health Sciences. “Together these programs will enhance research across multiple disciplines and elevate the research capacity of the University.”

As an established biomedical researcher, Vaughan’s participation in the grant proposal was crucial. The NIH expects that the principal investigator for a new COBRE must be able to ensure high-quality research and have the experience to administer effectively and integrate all components of the program.

Vaughan will help support the projects of the new center’s core team members, including Ohm, Lucia Carvelli, assistant professor of pharmacology, physiology and therapeutics; Archana Dhasarathy, assistant professor of biochemistry and molecular biology; and Sergei Nechaev, assistant professor of anatomy and cell biology. The team comprises researchers who are early career investigators or those with established research programs in other fields whose research has led them to the exciting area of epigenetics.

The new center expands UND’s ongoing epigenetics research program, which includes a group of interested scientists from several different departments and colleges, as well as the U.S. Department of Agriculture Grand Forks Human Nutrition Research Center. The group has been meeting regularly on campus since 2010.

Juan Miguel Pedraza

Categories: RRVRC NewsWire

Then & Now: Music

UND Discovery Magazine - Mon, 2013-12-09 08:50
Then - Renaissance (music) Man

Gary Towne has searched through more than 60,000 pages of Latin documents while investigating music and institutions in medieval and Renaissance Bergamo, Italy.

As a musician, historian and professor, one faculty member’s research of the musical past is an octave above the rest.

Gary Towne, professor of music, has already published an extensive first volume (Masses) of the Collected Works of Gaspar de Albertis, and now he’s working on a second volume about the famous Renaissance composer from Bergamo, Italy.

Towne doesn’t just waltz in to his publications; he goes all-out.

He has reviewed and researched more than 60,000 pages of Latin documents to find about 6,000 significant ones during seven visits to Bergamo.  Cataloguing is still in progress, having reached about 4,500 documents for a separate project he’s working on: a book titled Music and Musical Institutions in Medieval and Renaissance Bergamo.

His six research visits, totaling more than a year, were funded by grants from the Gladys Krieble Delmas Foundation and a Fulbright grant.

Towne currently is working on a volume of motets by Albertis, with two more volumes planned on Vespers and Holy Week music to go.

Albertis, a priest, wasn’t just a virtuoso; he was an innovator. That’s why Towne chose him. Towne was intrigued that Albertis was one of the first composers ever to write polychoral music. He was also one of the first to have his portrait painted, which at the time was a rarity.

Towne discovered Renaissance music as a child.  After hearing a Renaissance work in the background of a Disney program, he was consumed with that music.

“Nothing else has the same appeal for me,” Towne said.

It is with this passion that he has written 12 articles about Bergamo on topics ranging from a 1519 organ contract for the Bergamo cathedral to pedagogical philosophy in 17th-century Spain.  Towne also has the book in progress about music in medieval and renaissance Bergamo, and is continuing work on Albertis’ collected works.

Towne’s credentials are impressive, with a bachelor’s degree in music theory from Yale and a doctorate in musicology from the University of California, Santa Barbara.

His experience has enabled him to teach courses in music history, theory, world and American music, and interdisciplinary courses in the fine arts, the Italian Renaissance and early America.

Kate Menzies

Now - Pushing Boundaries in Musical Expression

Step off the beaten musical path and you’ll find Michael Wittgraf producing a musical composition without a single instrument, just Wii remotes and a laptop.

This is electronic music, and it’s what sets Wittgraf apart from the other music professors at the University of North Dakota.

Considered an innovator in the field, Wittgraf loves to experiment with different music software and equipment to provide audiences with a truly unique experience.

No wonder he was chosen as the first music professor at UND to be named a Chester Fritz Distinguished Professor, the school’s highest faculty honor.  He also serves as chair of the Department of Music.

Using both fixed media and live electronics, Wittgraf loves to interact with an audience and leave them speechless.

This past spring, while performing on tour in Japan and China with the Red River Trio (comprising a cellist, pianist and violinist), Wittgraf was able to give his Asian audiences a taste of his eccentric musical muse.

Wittgraf’s music has made its way to other parts of the globe as well, including presentations in Europe and Australia.

Apart from electronic music, Wittgraf plays bassoon, piano, organ and electric bass. His compositions span multiple genres, including solo, chamber, orchestral, band, choral, and, of course, electronic.

Wittgraf earned his master’s in music theory and composition from the University of Minnesota and his doctorate in music composition from Northwestern University.

Perhaps a bit surprising is the bachelor’s degree in mathematics that he earned from Carleton College.  But Wittgraf observes that having a firm grasp of arithmetic actually helps him in the digital world of electronic music.

“I had an aptitude for math, but a passion for music,” said Wittgraf.

About four years ago, Wittgraf decided to compose electronic music almost exclusively. But he’s not one to push the genre onto others, especially students.

For Wittgraf, one of the most rewarding experiences is when he can sit back and watch students perform and find their own musical niches.

He said, “I’ve been brought to tears more than once by student performances.”

Kate Menzies

Categories: RRVRC NewsWire
Syndicate content
glqxz9283 sfy39587p06